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ABSTRACT

In this paper, we investigate how the accounting measurement basis affects
the capital market pricing of a firm’s shares, which, in turn, affects the effi-
ciency of the firm’s investment decisions. We distinguish two broad bases for
accounting measurements: input-based and output-based accounting. We ar-
gue that the structural difference in the two measurement bases leads to a
systematic difference in the efficiency of the investment decisions. In partic-
ular, we show that an output-based measure has a natural advantage in align-
ing investment incentives because of its comprehensiveness. The (first-)best
investment is achieved when the output-based measure is noiseless and ma-
nipulation free. In addition, under an output-based measure, more account-
ing noise/manipulation always leads to more inefficient investment choices.
Therefore, if an output-based accounting measure is highly noisy and easy to
manipulate in practice, the induced investment efficiency can be quite low.
On the other hand, an input-based accounting measure, while not as compre-
hensive, may induce more efficient investment decisions than an output-based
measure if some noise is unavoidable in either measure. The reason is twofold.
First, input-based measures may be associated with less noise and limited ma-
nipulation in practice. Second, and more importantly, we show that under
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an input-based measure, a slight increase in accounting noise/manipulation
may lead to more efficient investment choices. In fact, the (first-)best result is
achieved when the noise/manipulability is small but positive. In other words,
for an input-based measure, being less comprehensive makes small but pos-
itive accounting noise/manipulability desirable. Two extensions of the basic
model are also explored.

1. Introduction

In this paper, we investigate how the accounting measurement basis af-
fects the capital market pricing of a firm’s shares, which, in turn, affects
the efficiency of the firm’s investment decisions. We distinguish two broad
bases for accounting measurements. The first, an output-based accounting
measurement, is designed to measure a firm’s activities by recording the
estimated financial benefits of production. In contrast, the second basis, an
input-based accounting measurement, is designed to measure a firm’s ac-
tivities by recording the estimated factor costs of production. We argue that
the two bases give rise to different informational properties of accounting
numbers. In turn, the different properties induce different capital market
pricing, which leads to a systematic difference in the efficiency of the invest-
ment decisions. In particular, we show that an output-based measure has a
natural advantage in aligning firm investment incentives. That is, because
an output-based measure provides comprehensive information about both
the scale and profitability of the investment, it reduces the negative impact
of mispricing on investment efficiency through a dampening effect. How-
ever, output-based measures suffer a potential disadvantage in that they may
inherit more measurement noise and may be subjected to more managerial
manipulation. We show that an output-based measure performs (first-)best
when it is noiseless and manipulation free. However, in cases where they are
highly noisy and easy to manipulate, the investment efficiency can be quite
low as a result.

On the other hand, if some noise is unavoidable in any measure, an
input-based measure may induce more efficient investment decisions than
output-based measures, despite having a disadvantage of only providing
information about the scale of the firm investment. The reason is twofold.
First, input-based measures are typically associated with less noise and lim-
ited manipulation. Second, and more importantly, we show that with an
input-based measure, some low levels of noise and manipulability are tol-
erated or even preferred in some cases. In fact, the (first-) best result is
achieved when the measurement noise is small but positive. In other words,
for an input-based measure, being less comprehensive makes small but pos-
itive measurement noise desirable.

The debate on measurement bases has a long and varied standing in ac-
counting history. Paton and Littleton [1940] describe accounting numbers
as price aggregates that measure the economic activities of a firm. The de-
bate on the basis of price aggregates centers on which “price” to use in
such measurements. Extensive subsequent writings describe the rationales
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for using entry prices, exit prices, past and/or future market prices, and
simulated prices (see Edwards and Bell [1961], Sterling [1970], and Ijiri
[1975]). We frame the debate within a partial equilibrium investment setting
with rational expectations and evaluate the different measurement bases
on the scale of induced investment efficiency. In other words, we adopt
an information-economic paradigm and evaluate the alternative measure-
ments according to their information content. (See Christensen and Demski
[2002] for more on such a paradigm.)

The insights in this paper may be helpful in current discussions of fair
value measurements. There has been considerable movement in public ac-
counting policy toward measurements based on fair value. The move is
partially motivated by the desire to increase the relevance of accounting,
arguably with some sacrifice in reliability. The emerging concern is the in-
troduction of considerably more estimates that are to be used in preparing
fair value accounting measures. The Financial Accounting Standards Board
(FASB) [2004] has recognized the reliability issue and has prescribed differ-
ent levels of estimates (Level 1, 2, 3, etc.) accordingly. In this paper, we point
to the effects of noise and manipulation on investment efficiency. In particu-
lar, we show that using output-based measures makes noise or manipulability
a social “bad” to the economy because either of the two induces inefficient
investments. In other words, one must always be careful about its negative
“real” effect on firm investments if the measure brings in an increased level
of noise and manipulability. This is because under output-based measures,
more accounting noise/manipulation always leads to more inefficient invest-
ment choices. On the other hand, with input-based accounting, the (first-)
best result is achieved when the measurement noise is small but positive.
As a result, our analysis points to a certain attractiveness of an input-based
measurement basis when some measurement noise is unavoidable for ei-
ther measure. Further, a slight increase in accounting noise/manipulation
may lead to more efficient investment choices. Generally, our results imply
that the rational economic choice between an output-based measure and
an input-based measure is not obvious in most cases where varying levels of
noise and manipulability exist in both measures.

Specifically, we consider a simple two-period model in which a firm’s in-
vestment decision is jointly affected by the total return of the investment
and by the short-term capital market pricing of its ownership shares. Condi-
tional on private information about the profitability of the investment, the
firm makes an investment decision that generates cash flows in both the first
and second periods. The firm’s objective is to maximize a weighted average
of the life-time cash flows and the short-term share price. The share price
reflects the rational expectation of firm value based on a public report of
the first-period aggregate cash flow (i.e., the sum of first-period investment
return and the cash flow from the first-period ongoing activities). The mar-
ket’s inability to identify the sources of the first-period cash flow may induce
a systematic short-term mispricing of firm value from the firm’s perspective.
In turn, this mispricing induces a suboptimal investment decision, ex ante.
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We show that the deviation from the first-best investment level may be pos-
itive (i.e., overinvestment) or negative (i.e., underinvestment) depending,
in part, on the timing of the investment return.

Within this framework, accounting is introduced as an information system
that provides (price-aggregate) measures about the investment. In pricing
the firm’s shares, the capital market uses the information in the accounting
measure as a supplement to the information contained in the aggregate
cash flow. We consider two accounting measurement bases. First, an output-
based accounting measure is modeled as an unbiased estimate of the invest-
ment return (which is a function of the actual investment made and the true
investment profitability). Second, and alternatively, an input-based account-
ing measure is modeled as an unbiased estimate of the actual investment
made. Either accounting signal provides additional information, which may
help the capital market improve the pricing of the firm’s shares. The im-
proved pricing induces better firm investment decisions. As the quality of
accounting measures (which is inversely related to the measurement noise)
improves, one would expect less mispricing, which would lead to better in-
vestment decisions. We show that this conjecture is, indeed, true for both the
input- and output-based measures when the noise in these measures is high.
That is, when accounting measures are highly imprecise, any improvement
in precision will lead to more efficient investment decisions.

When the measurement noise is low, however, the two measurement bases
are fundamentally different. For the output-based measure, investment effi-
ciency continues to increase in measurement quality. At the limit, when the
output-based accounting measure perfectly reveals the investment return,
first-best investment choices are made. However, for the input-based mea-
sure with low measurement noise, the investment efficiency is an inverted
U-shaped function of the measurement noise. As measurement noise de-
creases, the investment efficiency first increases up to a threshold point and
decreases afterwards. The first-best investment choices are made when the
noise is small but not zero (at the threshold point).

The reason for the difference, and for the surprising result, is the different
mispricing structures that are generated by the two measurement bases. For
the output-based measure, both the actual investment made and the actual
investment profitability affect the accounting measure. As the firm deviates
from the first-best investment level, the effect on its share price is dampened,
at the margin, by the measure’s built-in profitability estimate. In other words,
the firm’s ability to use real investment to change the market perception
of its investment profitability is mitigated by the independent profitability
estimate built into the output-based measure. In turn, the dampening ef-
fect lessens the ex ante incentives to distort the investment decision. The
investment efficiency increases monotonically as the measurement noise de-
creases. For the input-based measure, the accounting measure relies only on
the actual investment made and does not directly rely on a separate estimate
of the investment profitability. The dampening effect does not apply to the
(mis)pricing of the accounting report; it only applies to the (mis)pricing of
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a portion of the cash flow measure. As the measurement noise decreases,
the dampening effect is diminished as more valuation weight is shifted from
the cash flow to the accounting report. This is the reason that a noiseless
input-based measure invites severe deviation from the first-best investment.

Finally, we offer two extensions of the model. First, we add accounting
manipulation to the mix. Following Dye and Sridhar [2004a], we model ac-
counting manipulation by giving the firm an option to privately modify ac-
counting measurements before they are reported to the capital market. The
total cost of manipulation contains a random element. As a result, account-
ing manipulation introduces additional noise into the reported accounting
measures. Based on the existing economic forces, it is shown that account-
ing manipulation always makes the firm worse off under an output-based
accounting regime because adding more noise to an output-based account-
ing measure always leads to a less efficient investment decision. However,
accounting manipulation may make the firm better off under an input-
based accounting regime. This is because there are regions in the inverted
U-shaped relation where a slight increase in measurement noise will improve
the investment efficiency. This is most likely when the existing measurement
noise is small, and the noise introduced by accounting manipulation to the
input-based measure is also small.

In the second extension, we modify the model to allow an option for
the date-2 shareholders to utilize the technology in the firm to generate
future cash flows. In this modified model, the market price is reflective of
two streams of cash flows: those generated by the initial investment and
those generated by future investments. As before, the mispricing affects the
initial investment choice and the relative performance of the input- versus
output-based accounting measures. However, it is no longer true that the
output-based measure performs best when noiseless. Comparing account-
ing measurement bases is further complicated and requires knowing more
details of the context including, in particular, the importance of future cash
flow relative to current cash flow.

The antecedent of studies on investment myopia in finance and eco-
nomics are Holmström [1982] and Stein [1989]. Stein [1989] finds that
the managers, facing stock market pressure, forsake good investments so
as to boost current earnings, even though the market is efficient and is not
fooled in equilibrium. In spite of being unable to fool the market, managers
are trapped into behaving myopically in the classic signal-jamming model.
Dye and Sridhar [2004a] examine how investment decisions are affected by
the reliable and relevant components of an aggregate accounting report.
Their study focuses on the reliability-relevance trade-offs in accounting ag-
gregation, the conditions under which aggregation improves efficiency, and
the optimal weights in constructing an optimal accounting report. While
Dye and Sridhar [2004a] and our study share the feature of accounting ma-
nipulation, our focus is on the comparison of two alternative accounting
measurements, each of which is disaggregated from a common cash flow
measure. In addition, Demski, Lin, and Sappington [2005] analyze a setting
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in which entrepreneurs invest before they learn whether they will be forced
to sell their assets. They study the optimal design of asset impairment regu-
lations when the assets resale market suffers from the “lemon” problem.

Using a contracting setting, Prendergast [2002] examines input-based
and output-based measures and argues that input-based monitoring, cou-
pled with a directed action, performs best in stable settings, while output-
based monitoring is best in uncertain environments. The reason is that
output-based contracts, coupled with a delegation of decisions, align so-
cial and private incentives better in uncertain situations. In contrast, our
study focuses on the market incentives produced by input- and output-based
measures and finds that the output-based measure performs best when the
measurement is precise. Among other accounting studies on investment
efficiency, Kanodia, Singh, and Spero [2005] analyze the economic conse-
quences of the interaction between noisy accounting measures and informa-
tion asymmetry regarding the investment profitability. They find that some
degree of accounting imprecision can be value-enhancing, which is consis-
tent with our results on the input-based measure. In contrast, we focus on
the comparison of input- versus output-based measures and show that the
role of accounting imprecision depends on the accounting basis: under an
output-based measure, noiseless accounting is optimal.

The rest of the paper proceeds as follows. Section 2 describes the model
details. Section 3 presents the benchmark results of the basic setup where
only an aggregate cash flow is reported. In section 4, we introduce account-
ing measures and analyze the equilibria induced by accounting. Section 5
introduces an extension that models accounting manipulation. Section 6
offers another extension where the firm technology is reusable in the fu-
ture. Section 7 concludes the paper.

2. The Model

Consider an economy with a risk-neutral firm in a competitive risk-neutral
capital market. There are two periods (and three dates), representing short-
and long-term concerns. The firm’s normal ongoing activities generate a
pair of cash flows, denoted xt , realized on date-t (t = 1, 2). We assume:[

x1

x2

]
∼ N

([
µ

µ

]
,

[
σ 2 ασ 2

ασ 2 σ 2

])
. (1)

On date-0, the firm is faced with an investment opportunity (called a
project) and observes a private signal, denoted θ ∈ R, about the project’s
profitability. The prior distribution of θ is normal with mean θ 0 and variance
σ 2

θ (i.e., θ � N[θ 0, σ 2
θ]). The firm chooses an investment level, denoted

I ∈ R
+, to invest into the project. The project generates cash flows on date-

1 and date-2, denoted by f 1(θ , I ) and f 2(θ , I ), respectively. For tractability,
we assume the project returns f1(θ, I) = k

√
θ I and f2(θ, I) = (2 − k)

√
θ I ,

where k ∈ (0, 2). Thus, the total investment return (2
√

θ I) depends only
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on the investment level I and the profitability variable θ . The timing of the
investment return depends on k: Higher k indicates that more investment
return is realized in the short-term.1

The realized periodic cash flows to the firm are denoted by zt(t = 1, 2):2

z1 = x1 + f1(θ, I) = x1 + k
√

θ I . (2)

z2 = x2 + f2(θ, I) = x2 + (2 − k)
√

θ I . (3)

Following the literature (Dye [2002], Dye and Sridhar [2004a,b]), we
assume that the investment is made privately (i.e., not directly observable)
and that the firm is unable to directly communicate the private information
(θ) to outsiders, including the capital market. We also assume that θ is
independent of x1 or x2 and the ongoing cash flows (x1 or x2) are not
affected by the investment choice (I ).

At the end of date-1, the firm’s shares are priced in a competitive risk-
neutral capital market such that the market price, denoted P , is equal to
the expected value of the cumulative cash flow on date-2. Denote the pub-
licly available information set on date-1 by � (assuming no discounting or
dividend payments):

P = E [z1 + z2 | �]. (4)

The information set � includes public information available for pricing.
In the basic setup, the firm publicly reports its aggregate cash flow only,
so � contains z1 alone. Later, we consider additional signals created by an
accounting information system; so � may include additional items such as
a deferral or an accrual.

The firm is motivated by both the long-term interest (i.e., cumulative
cash flows on date-2) and the short-term interest (i.e., date-1 stock price).
We assume for life cycle or liquidity reasons, a portion of the firm, denoted
β ∈ (0, 1), must be sold on date-1. The remaining (1 − β) portion will
be held by the date-0 shareholders.3 As a result, the firm’s objective is to
maximize a weighted average of date-1 market price and date-2 cumulative
cash flow (net of the investment costs I ). For a type-θ firm with investment
function I (θ), the objective function is

−I(θ) + β P + (1 − β)(z1 + z2). (5)

1 All qualitative results remain if we assume that ft (.) are the expected values of the short- and
long-term investment returns and that the noise in the returns is independent of the existing
random variables.

2 Here we assume that z1 is gross of the investment cost (I ), which is appropriate given that
we assume the investment is made privately. If z1 is net of the investment cost, the quantitative
results would change while the same qualitative forces would remain. See Dye [2002] and Dye
and Sridhar [2004a] for similar assumptions.

3 Another reason may be that the firm faces a probability β of takeover on date-1, in which
case the firm wishes to maximize its date-1 share price (see Stein [1989] for additional discus-
sions). In the finance literature, incentive to underinvest may be driven by a debt-overhang
problem (see Myers [1975]).
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t = 0 t = 1 t = 2

Firm privately Cash flows x1 and f1(θ, I) Cash flows x2 and f2(θ, I)
observes θ and are realized are realized
chooses I(θ) Firm releases reports Firm is liquidated

Market prices P based on Ω

FIG. 1.—Time line of events.

The sequence of the events is summarized in Figure 1.
As a reference point for what follows, we provide a description of the

first-best investment policy in Lemma 1 (proof omitted).

LEMMA 1 (first-best). The socially optimal investment policy consists of a function
I FB (θ), where for each θ , I FB (θ)maximizes f1(θ, I) + f2(θ, I) − I = 2

√
θ I − I.

So we have I FB = θ when θ > 0; and I FB = 0 when θ < 0.

We now define the equilibrium where the investment policy is made in
the self-interest of the firm.

DEFINITION 1. An equilibrium relative to � consists of an investment function
I ∗(·) and a market pricing function P(·), such that:

(i) Given P(·), optimal investment function I ∗(·) maximizes V (θ | I(·)) =
Ex1x2 [−I + β P (·) + (1 − β)(z1 + z2)];

(ii) Given I ∗(·), the pricing function P(·) satisfies P = E [z 1 + z 2 | �, I ∗(·)].

We employ an approximation assumption to calculate the pricing func-
tion in closed-form.

Approximation Assumption. Let random variables x and y be jointly nor-
mally distributed, and z is normally distributed and independent of x and
y. Denote by f (x, z | y + az) the jointly conditional density function of x
and z for some known constant a and denote G(z | y + az) the conditional
cumulative density function of z. We assume for all realizations of y + az,∫

z>0

∫
x
(x + z) f (x, z | y + az) dx dz + G(0 | y + az)

∫
x
x f (x | y) dx

∼=
∫

z

∫
x
(x + z) f (x, z | y + az) dx dz. (6)

In words, the approximation assumes that the error due to censoring the
lower tail of a normally distributed random variable is small when calculating
the conditional mean of the sum of the censored variable and another
normal random variable. In our context, the investment strategy function
I (θ) censors the underlying profitability parameter θ by the fact I = 0 if
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θ < 0. The market observes some linear function of I (θ), not the uncensored
θ . The assumption allows us to calculate the market inference in closed-form
by assuming the censored θ is close enough to the uncensored θ . Because
the censoring point is always held at zero, it is clear that this approximation
becomes increasingly accurate as E[z] is large, that is, the probability mass
to the left of zero is increasingly small.4,5

3. Basic Setup

Except in section 6, we assume throughout that on date-1 the realized
aggregate cash flow (z1) is always publicly observable. However, outsiders
are not able to differentiate the cash flow components. In other words,
cash flows generated from ongoing activities and from the investment are
aggregated. This aggregation feature plays an important role in this setting.

We now analyze the equilibrium behavior of the firm in the basic setup.

THEOREM 1. Using the approximation assumption (6), there exists a unique
linear equilibrium relative to � = {z 1}. It is given by

(i) an equilibrium linear pricing function:

P (z1) = a + b × z1, where (7)

b = (1 + α)σ 2 + 2kδσ 2
θ

σ 2 + k2δσ 2
θ

, (8)

a = (2 − b)µ + (2 − kb)
√

δθ0. (9)

(ii) an equilibrium investment function:

I(θ) =
{

δθ, if θ ≥ 0

0 if θ < 0,
(10)

where δ =
(

1 + β

(
bk
2

− 1
))2

. (11)

4 Note this approximation assumption pertains to calculating the conditional expectation
(i.e., expected x + z conditional on the realization of y + az). We acknowledge that this is
a global requirement. That is, the approximation applies for each and every realization of
y + az. For extremely negative realizations of the censored variable z, the approximation error
may be large. However, the approximation error for a particular realization of y + az, denoted
AE(y + az), becomes smaller and approaches zero as the mean of z increases. In the appendix,
we formally prove this claim.

5 Dye and Sridhar [2004b] use an approximation assumption in their analysis. While their ap-
proximation applies to calculating the unconditional mean of an altered normally distributed
random variable, ours applies to a series of conditional means of an altered normally distributed
random variable. Stocken and Verrecchia [2004] also use a similar approximation.
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Proof of Theorem 1. All proofs are placed in the appendix. �

Compared with the first-best investment, a key observation in Theorem 1
is that the equilibrium investment choice (I ) is generally a function of the
short-term market pressure (parameter β) and the timing of the investment
cash flows (parameter k), not just a function of the investment profitability
(variable θ). This is because in pricing the firm’s shares, the market is unable
to distinguish the individual components of the short-term cash flow (z1).
To illustrate, suppose that the market is able to distinguish the cash flow
components; then the appropriate response to every dollar of the ongoing
cash flows (x1) would be (1 + α) and the appropriate response to the short-
term investment return ( f1(θ, I) = k

√
θ I) would be 2

k . However, because
only the aggregate (z1 = x1 + k

√
θ I) is reported, the market response is

the weighted average of (1 + α) and 2
k . Therefore, the market may not

price the investment efficiently. Because the firm cares about the short-term
share price (β > 0), the efficiency of the pricing affects the investment
incentives.

To understand the nature of the mispricing, we return to the firm objective
function (5), which may be rewritten as

−I + β P + (1 − β)(z1 + z2)

= −I + z1 + z2 + β(P − (z1 + z2))

=
(
−I + x1 + x2 + 2

√
θ I

)
+ β(P − (x1 + x2 + 2

√
θ I)). (12)

The first term of (12) is the first-best objective function. The second term
of (12), when β > 0, is an increasing function of the mispricing (equal to
price minus the long-term firm value). When making the investment deci-
sion (I ), the firm does not know xt but knows θ . So, the expected mispricing,
given θ , is

Ex1x2 [P − (x1 + x2 + 2
√

θ I) | θ].

Substituting the linear pricing function P = a + b(x1 + k
√

θ I) into the
expected mispricing, we have

Ex1x2 [P − (x1 + x2 + 2
√

θ I) | θ]

= Ex1x2 [a + b(x1 + k
√

θ I) − (x1 + x2 + 2
√

θ I) | θ]

= (bk − 2)
√

θ I + Ex1x2 [a + bx1 − (x1 + x2)]. (13)

Given that the second term of (13) is not a function of I , the mispricing
will only affect the equilibrium investment through the first term of (13):6

(bk − 2)
√

θ I . So we have

6 Notice that the second term of (13), while not affected by investment (I ), is still a mispric-
ing caused by reporting the aggregate cash flow. This mispricing would induce (operating)
inefficiencies if the firm is able to control the timing of the ongoing cash flows (x1 and x2).
See Stein [1989].
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V (θ | I(·)) = Ex1x2 [(−I + x1 + x2 + 2
√

θ I) + β(P − (x1 + x2 + 2
√

θ I)) | θ]

= −I + Ex1x2 [x1 + x2] + 2
√

θ I + β(bk − 2)
√

θ I

+ βEx1x2 [a + bx1 − (x1 + x2)]

= −I + 2
√

θ I + β(bk − 2)
√

θ I + (2 + β(b − 2))µ + βa.

When the firm either does not care about the short-term share price
(β = 0) or the market correctly prices firm investments (b = 2

k ), the firm
makes the first-best investment choices. If neither condition is met, the
(mis)pricing is affected by the firm’s investment choice, so the firm has an
incentive to deviate from the first-best level. In fact, the firm faces conflicting
incentives when making its investment decision:

� Incentive to underinvest. Given k �= 2, some investment returns are real-
ized in the long-run. Given 0 < β < 1, the firm receives only a fraction
(i.e., (1 − β) share) of the long-run marginal benefit but must bear the
full marginal cost. This leads to underinvestment because the marginal
return is positive but decreasing in I . (See similar economic forces in
Dye [2002], Dye and Sridhar [2004a,b].)

� Incentive to overinvest. Given k �= 0, some investment returns are realized
in the short-run. Given 0 <β < 1, the firm has an incentive to inflate the
first period cash flow (z1 = x1 + k

√
θ I) because the pricing function

places a positive weight on z1. In our model, the only way to inflate z1

is to increase investment level (I ). This leads to overinvestment as the
short-run marginal benefit from the investment may be inflated. (See
a similar tension in Stein [1989].)

We summarize the investment results with the following theorem.

THEOREM 2. In the basic setup � = {z 1}, there exists a value for k, namely,
k∗ = 2

1 + α
, such that the linear equilibrium produces the first-best investment level

δ = 1. If k > k∗, then δ > 1 or the firm overinvests; if k < k∗, then δ < 1, or the
firm underinvests.

Intuitively, when k = k∗, the appropriate response to the short-term in-
vestment return ( 2

k ) happens to be the same as the appropriate response
to the ongoing cash flow (1 + α). That is, the proportion of the short-term
investment return perfectly matches the time-series correlation of cash flows
from ongoing activities. Thus, even with an aggregated cash flow report, the
market price motivates the efficient investment decision.

If k �= k∗, the market reaction to the aggregate cash flow is an aver-
age of 2

k and (1 + α). When k > k∗, the average is higher than 2
k , which

places too high of a weight on the short-term investment return, leading
to overinvestment. When k < k∗, the average is lower, leading to underin-
vestment. In other words, the aggregation of information leads to market
mispricing of the firm investment, which leads to suboptimal investment
decisions.
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Using this basic model, we can show that (1) both the market response
coefficient b and the investment coefficient δ increase as α increases; (2)
if k < k∗, both b and δ increase as the ongoing cash flows are less noisy
(i.e., σ 2 decreases); and (3) as the short-term pressure β increases, market
response b decreases and firm investment coefficient decreases if k < k∗.
(See Proposition 1 in the appendix for details.)

4. Accounting

Now we expand the information set that is available to the market. We are
particularly interested in how information contained in the noncash compo-
nent of the financial statements affects the market pricing and the induced
investment incentives. We model this by introducing a public signal y, which
is produced by the accounting information system of the firm. We assume
that on date-1 both the realized cash flows (z1) and the accounting signal (y)
are publicly observable. The general idea is that y may provide additional
information beyond an aggregate cash flow report (z1) and in particular, y
may help differentiate the individual components of cash flows.7

4.1 INPUT-BASED AND OUTPUT-BASED ACCOUNTING MEASURES

In accounting practice, two broad accounting measurement bases domi-
nate how accounting deferrals/accruals are prepared. First, under an input-
based measurement basis, accounting metrics are prepared to be estimates
of the effort (or costs) expended in various firm activities. The historical
(exchange) cost principle reflects this approach well. Ready examples are
long-lived assets and inventory, where book values are based on acquisition
costs. Second, under an output-based measurement basis, accounting metrics
are prepared to be estimates of the expected reward in return (for the costly
activities). The fair value principle reflects this approach well. Ready exam-
ples are market value methods where assets and liabilities are measured at
market value or based on an estimate of the expected negative predictive
value (NPV) of future cash flows (which is designed to simulate a would-be
market value). We study both accounting systems and examine the effect
of alternative accounting reports on the investment efficiency. We assume
that the firm can choose either an input-based approach, labeled IP, or an
output-based approach, labeled OP.8

7 This idea is consistent with some recognizable features of certain timing accruals. For
example, the unearned revenue accruals help classify the timing properties of cash inflow, and
the extraordinary-item category may help distinguish components of realized cash flows with
different serial correlations.

8 Here we have limited our attention to a single, one-time measurement. In practice, account-
ing measurement systems can be much more complex with an initial measurement, subsequent
(date-2) re-valuation, and a final measurement on the disposal of the item in question. A dy-
namic model with multiple information arrivals would make it possible to model these issues,
and it is certainly an interesting extension of the current model.
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Denote the signal produced by an output-based measure yOP , and assume
that

y OP = k
√

θ I + εOP , (14)

where εOP ∼N(0, σ 2
OP ). The output-based accounting report provides a noisy

measurement of the short-term investment return.9

For the input-based measure, denote the report yIP , and assume that

y IP = I + εIP , (15)

where εIP ∼N(0, σ 2
IP ). The input-based accounting report provides a noisy

measurement of the investment cost. In the following, to simplify the nota-
tion, we denote the accounting policy by m, m ∈ {OP , I P}.

4.2 EQUILIBRIA UNDER ALTERNATIVE ACCOUNTING REGIMES

We now analyze the equilibrium behavior of the firm under both output-
based accounting and input-based accounting.

THEOREM 3. If y OP = k
√

θ I + εOP and yIP = I + εIP , using (6), there exists
a unique linear equilibrium relative to � = {z 1, y m} (m ∈ {OP , I P}) and it is
given by

(i) an equilibrium linear pricing function:

P
(
z1, y m) = am + bm

z × z1 + bm
y × y m, where (16)

bOP
z = (1 + α)k2δOPσ 2σ 2

θ + (1 + α)σ 2σ 2
OP + 2kδOPσ 2

OPσ 2
θ

k2δOPσ 2σ 2
θ + σ 2σ 2

OP + k2δOPσ 2
OPσ 2

θ

, (17)

bOP
y = [2 − (1 + α)k]kδOPσ 2σ 2

θ

k2δOPσ 2σ 2
θ + σ 2σ 2

OP + k2δOPσ 2
OPσ 2

θ

,

aOP = (
2 − bOP

z

)
µ + (

2 − kbOP
z − kbOP

y

)√
δOPθ0,

(18)

b IP
z = (1 + α)δ2

IPσ 2σ 2
θ + (1 + α)σ 2σ 2

IP + 2kδIPσ 2
IPσ 2

θ

δ2
IPσ 2σ 2

θ + σ 2σ 2
IP + k2δIPσ 2

IPσ 2
θ

, (19)

b IP
y = [2 − (1 + α)k]δ

3
2
IPσ 2σ 2

θ

δ2
IPσ 2σ 2

θ + σ 2σ 2
IP + k2δIPσ 2

IPσ 2
θ

,

aIP = (
2 − b IP

z

)
µ + (

2 − kbIP
z −

√
δIP b IP

y

)√
δIPθ0.

(20)

9 For simplicity, we choose the short-term return as the expected value of an output-based
accounting report. Our results do not change if we assume that the report is scaled up to
provide a noisy measurement of the total investment return (i.e., y OP = 2

√
θ I + εOP ).
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(ii) an equilibrium investment function:

I m(θ) =
{

δmθ, if θ ≥ 0

0 if θ < 0
, where (21)

δOP =
(

1 − β + βk
(
bOP

z + bOP
y

)
2

)2

, δIP =




1 − β + βkbIP
z

2
1 − βb IP

y




2

. (22)

To gain some insights into the results, we make the following observations.

� If k = k∗ = 2
1 + α

, the linear equilibrium under either accrual account-
ing system produces the first-best investment level (δm = 1) and the
market response coefficients bm

z = 2
k , bm

y = 0(m ∈ {O P , I P }). In this
case, the cash flow z1 provides sufficient information for efficient pric-
ing, and the market ignores the accruals completely (bm

y = 0).
� If σ 2

m → +∞, the equilibrium is the same as the basic setup (� =
{z 1}). The quality of accruals is so poor that the market ignores the
accounting signals (bm

y = 0), which is equivalent to a setting without
accounting reports.

� The direction of the response to accounting signals (i.e., the sign of
bOP

y or bIP
y ) can be positive or negative depending on the sign of [2 −

(1 + α)k].

The following corollary summarizes the intuitive properties of the equi-
librium under either accounting regime.

COROLLARY 1. If y OP = k
√

θ I + εOP and yIP = I + εIP , using (6), for any
m ∈ {OP , I P},

(i) if σ 2
m → +∞, the investment choice approaches that in the basic setup where

� = {z 1} ;
(ii) δm increases (decreases) in σ 2

m when k > k∗ (k < k∗);
(iii) bm

z decreases (increases) in σ 2
m when k > k∗ (k < k∗);

(iv) bm
y increases (decreases) in σ 2

m when k > k∗ (k < k∗).

This corollary confirms an intuitive relation between measurement noise
and investment efficiency. Recall that Theorem 2 shows that the aggrega-
tion of ongoing and investment cash flows induces the suboptimal invest-
ment. The combination of items (i) and (ii) of Corollary 1 indicates that the
suboptimal investment problem is alleviated by the accounting report. For
example, when k < k∗ and σ 2

m → +∞, we know δm is the same as in the basic
setup and the firm underinvests. In this case, item (ii) implies that a lower
σ 2

m (than +∞) would induce a higher δm , alleviating the underinvestment
problem.

When the accounting quality is extremely poor (σ 2
m → +∞), no valuation

weight is placed on the accounting signals (bm
y = 0). As the quality improves,
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more weight is shifted between the cash flow report and the accounting
report. For example, when k < k∗, the market underprices the investment.
As σ 2

m is lowered (from +∞), the market response to the accounting signal
increases (from zero) and the response to the cash report decreases (i.e.,
the weight shifts from cash flow to accruals).

Overall, the results thus far show that, when the noise level is high enough,
an improvement in the quality of the accounting measures (i.e., a drop in
the noise) improves the communication between the firm and the market,
and this benefits the investment efficiency. That is, the quality of accruals
is well defined and well behaved: the lower the variance, the higher the
accrual quality, the lower the market mispricing of firm investments, and
most importantly, the more efficient the investment decision.

4.3 COMPARING OUTPUT-BASED AND INPUT-BASED ACCOUNTING MEASURES

When the noise level is low, the output-based and input-based measures
exhibit a fundamental difference. We find a monotonic relation between the
investment efficiency and the quality of the output-based accounting signal.
That is, the investment efficiency under output-based accounting continues
to improve when measurement noise decreases.

In the extreme, output-based accounting achieves the first-best result as
σ 2

OP is reduced to zero. If σ 2
OP = 0, the market is able to infer the short-term

investment return perfectly from the accounting report (because yOP =
k
√

θ I for certain). Subtracting the accounting signal from the aggregate
cash flow reveals the cash flow from first period ongoing activities. That is,
the accounting report helps the investors clearly distinguish the cash flow
components. In turn, the market response coefficients are bOP

z = 1 + α and
bOP

y = 2
k − (1 + α), leading to a combined reaction of 2

k to the short-term
investment return, which provides the first-best investment incentive.

In contrast, input-based accounting is another story in which the results
are not as straightforward. The relation between investment efficiency and
measurement noise (σ 2

IP ) is not monotonic. When k > k∗, the overinvest-
ment problem exists only when σ 2

IP is high enough. If σ 2
IP is very low, the

firm underinvests. In the extreme, when σ 2
IP = 0, outsiders are able to in-

fer the actual investment made (I ); the market response coefficients are

bIP
z = 1 + α and b IP

y = [2 − (1 + α)k]δ
− 1

2
IP , and the investment level δIP =

(1 − β( k(1 + α)
2 − 1))2 < 1.

The following theorem summarizes and compares the effects of the two
accounting systems on the investment efficiency.

THEOREM 4. If y OP = k
√

θ I + εOP and yIP = I + εIP ,

(i) if σ 2
OP = 0, investment choice is the first-best level, and

(ii) if σ 2
IP = σ 2

θ , investment choice is the first-best level.
(iii) There exists a �(0 < � < σ 2

θ), such that a sufficient condition for input-
based accounting to be more (less) efficient than the cash flow reporting regime
(of the basic setup) is σ 2

IP > �(σ 2
IP < �).
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(iv) There exists a�′(� < �′ < σ 2
θ), such that a sufficient condition for input-

based accounting to be more efficient than output-based accounting is the
combination of (a) σ b

IP ∈ [�′, σ 2
θ ] and (b) σ 2

OP > �′.

The two systems achieve the first-best at different noise levels. Under the
output-based system, the first-best is achieved when the accounting measure
is noiseless, which is very intuitive. Under the input-based system, the first-
best is achieved when the noise is small but not zero. More importantly,
the output-based system does not dominate the input-based system in all
situations. Since some noise is unavoidable in practice, it is likely the input-
based system may be preferable. Consider the following two comparisons.
First, suppose an accounting item in question is well understood and easy to
measure. So we assume both output-based and input-based measures share
the same (small) noise level (e.g., less than σ 2

θ). In this case, Theorem 4
predicts the input-based system is preferred if the variance of the noise
(σ 2

m) is between �′ and σ 2
θ . Alternatively, suppose the accounting item is

not well understood and hard to measure. So we assume the noise level is
high for both measures (i.e., greater than σ 2

θ). In this case, it is more likely
that output-based accounting may entail a more noisy measure than input-
based accounting.10 As a result, the investment efficiency under a highly
noisy output-based measure may be closer to the (benchmark) cash flow
setting (by Corollary 1), while the efficiency under a not-so-noisy input-
based measure may be closer to first-best (by Theorem 4). In this case,
input-based dominates output-based as long as their variance difference is
large enough.

The key difference between input-based and output-based systems has
to do with the fundamental difference between the two accounting ap-
proaches. The input-based method (yIP = I + εIP ) requires estimat-
ing the investment cost (I ) alone, without any explicit attention to the
profitability of the investment (θ). The output-based method (y OP =
k
√

θ I + εOP ) requires estimating both I and θ . This fundamental differ-
ence leads to a structural difference in the market mispricing of firm
investments.

Returning to the analysis of investment distortion induced by mispricing,
substitute the pricing function (P = aOP + bOP

z (x1 + k
√

θ I) + bOP
y (k

√
θ I +

εOP )) into the expected mispricing, and we have

10 One way to view the natural relation between σ 2
IP and σ 2

OP is that the accounting system
constructs the output-based measure based on two estimates: an estimate of actual investment
made (e.g., y IP = Î = I + nois e) and an estimate of profitability (e.g., θ̂ = θ + nois e). The

output-based measure is estimated using the true production function (roughly, y OP = 2
√

θ̂ Î).
Viewed this way, it is natural that the overall noise in yOP is likely to be higher than the noise
in yIP .
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Ex1x2 [P − (x1 + x2 + 2
√

θ I) | θ]

= Ex1x2

[
aOP + bOP

z (x1 + k
√

θ I) + bOP
y (k

√
θ I + εOP )

− (x1 + x2 + 2
√

θ I) | θ]
= [(

bOP
z + bOP

y

)
k − 2

]√
θ I + Ex1x2

[
aOP + bOP

z x1 + bOP
y εOP − (x1 + x2)

]
.

If (bOP
z + bOP

y ) k − 2 �= 0, any investment will affect the market pricing,
giving the firm an incentive to over- or underinvest. The marginal effect of
investment I on the mispricing depends on true investment profitability θ

(because the derivative equals
(bOP

z + bOP
y )k−2

2

√
θ
I ). This leads to a dampening

effect: The marginal benefit is concave in I , providing a diminishing return
to investment deviations. Intuitively, the firm’s ability to use real investment
to change the market perception of its investment profitability is mitigated by
the independent profitability estimate built into the output-based measure.

With input-based accounting, the expected mispricing is

Ex1x2 [P − (x1 + x2 + 2
√

θ I) | θ]

= Ex1x2

[
aIP + b IP

z (x1 + k
√

θ I) + b IP
y (I + εIP ) − (x1 + x2 + 2

√
θ I) | θ]

= (
b IP

z k − 2
)√

θ I + b IP
y I + Ex1x2

[
aIP + b IP

z x1 + b IP
y εIP − (x1 + x2)

]
.

The mispricing will only affect the equilibrium investment through the
first two terms: (b IP

z k − 2)
√

θ I + b IP
y I. The marginal effect of investment on

the first term (b IP
z k − 2)

√
θ I depends on the investment profitability (the

derivative is b IP
z k − 2

2

√
θ
I ) while the marginal effect on the second term bIP

y I
depends only on an equilibrium constant bIP

y . The dampening effect is active
only on the first term, not the second term. Notice, from Theorem 3, that we
know in equilibrium, the market reactions to the cash flow and accounting
measures (bIP

z and bIP
y , respectively) are such that

bIP
z k − 2 = [(1 + α)k − 2]

(
σ 2σ 2

IP + δ2
IPσ 2σ 2

θ

)
δ2

IPσ 2σ 2
θ + σ 2σ 2

IP + k2δIPσ 2
IPσ 2

θ

,

b IP
y = [2 − (1 + α)k]δ

3
2
IPσ 2σ 2

θ

δ2
IPσ 2σ 2

θ + σ 2σ 2
IP + k2δIPσ 2

IPσ 2
θ

.

When k �= k∗, the sign of bIP
z k − 2 is always the opposite of the sign of

bIP
y , which indicates that the marginal effects on the two terms are in the

opposite direction. The total effects on mispricing depend on which item
outweighs the other.

For example, if k > k∗, bIP
z k − 2 is positive, which indicates that a

higher investment would increase market mispricing. However, the damp-
ening effect provides a diminishing return to overinvestment, which makes
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T A B L E 1
The Performance of Three Accounting Regimes

Parameter regions

β = 0 0 < β < 1
Accounting
regimes k = k∗ ≡ 2

1+α
k > k∗ k < k∗

Cash flow δ = 1 δ = 1 δ > 1 δ < 1

δOP = 1 if σ 2
OP = 0 δOP = 1 if σ 2

OP = 0
Output-based δOP = 1 δOP = 1

δOP > 1 if σ 2
OP > 0 δOP < 1 if σ 2

OP > 0

δ IP = 1 if σ 2
IP = σ 2

θ δ IP = 1 if σ 2
IP = σ 2

θInput-based δ IP = 1 δ IP = 1
δ IP ≶ 1 if σ 2

IP ≶ σ 2
θ δ IP ≷ 1 if δ IP ≷ 1

overinvestment less attractive. On the other hand, the firm is also motivated
to underinvest because bIP

y is negative. Notice here that the marginal effect
is a constant and is independent of the private information θ and invest-
ment level I ; no dampening is in effect. This hurts the economy when the
accounting report is too precise. If σ 2

IP is too small, the absolute value of
bIP

y is too large, which motivates the firm to underinvest by a large amount
(Corollary 1). This motivation outweighs the overinvestment motivation by
the first item because a small σ 2

IP reduces the market response to the aggre-
gate cash flows report (bIP

z ).
Consider the limiting case, when σ 2

IP = 0. Unlike the case for output-based
accounting, the first-best investment is not achieved when the input-based
measure is noiseless. Suppose the firm invests the first-best amount (e.g.,
I = θ), then the market’s best responses are bIP

z = 1 + α and bIP
y = 2 −

(1 + α)k < 0. These responses invite the firm to underinvest because at I =
θ , the marginal benefit of additional investment is b IP

z k − 2
2 + b IP

y = 1 − (1 + α)k
2 ,

which is less than the marginal cost of additional investment (=1).11

In another knife-edge case, the two opposite effects exactly offset each
other where the first-best is achieved. That is, if σ 2

IP = σ 2
θ and we propose

that δ IP = 1, then we find that b IP
z k − 2

2 + b IP
y = 0 (i.e., the marginal effect

of any investment deviation is zero). In equilibrium, there is no incentive
to distort investment. Thus, with the input-based measure, the first-best is
achieved when measurement noise is small but not zero. Table 1 summarizes
the performance of three accounting regimes.

Figure 2 illustrates the effect of accounting reports on the efficiency. Here,
the expected net project return represents the efficiency of the investment.
The FB line stands for the net project return when the investment level is
the first-best (I FB = θ). The basic setting results (I SB = δθ) are denoted by

11 Further, in this limiting case of perfect knowledge of the actual investment made (I ), the
induced investment efficiency is worse than that of the basic setup (item iv of Theorem 4).
Alternatively, if the profitability (θ) is perfectly revealed and z is reported, it can be shown that
the induced efficiency is not first-best. This is consistent with Kanodia, Singh, and Spero [2005],
where some imprecision in the accounting measurement is preferred. What is different in the
current model is that the conclusion on accounting imprecision depends on the accounting
measurement basis. With an output-based measure, the ideal accounting is noiseless.
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SB-CF

Net project return

2
θσ

FB

0

OP

IP

2
mσ

'ΣΣ
FIG. 2.—The effect of accounting quality on the net project return.

the SB-CF line. The performance of input-based accounting (I IP = δ IPθ)
and output-based accounting (I OP = δOPθ) is described by the IP and OP
solid curves respectively. From the figure, it is easy to see that output-based
accounting is dominated by input-based accounting in the region when the
common noise is between �′ and σ 2

θ .12

5. Extension I: Accounting Manipulation

In this section we expand the model to consider managerial manipulation
of the accounting measurement. A robust feature of any accrual measure-
ment is that firms have varying degrees of influence (or discretion) on how
accruals are prepared. However, other economic factors (e.g., auditing or
managerial reputation) prevent the use of complete discretion. We capture
this partial discretion by considering a simple model of cost-benefit calculus
on the part of the firm.

5.1 EQUILIBRIUM UNDER ACCOUNTING MANIPULATION

Suppose that the accounting signal y m (m ∈ {OP , I P}) is subjected to
managerial manipulation. A firm can prepare its accounting report wm

differently from the unmanipulated ym , at a cost. We assume the cost as
c(wm) = cm

2 (wm − y m − ξm)2 , where ξm is independent of all other random
variables and follows a normal distribution with mean zero and variance of

12 Figure 2 shows that input-based accounting induces more efficient investment decisions
than output-based accounting for all noise levels greater than �′. We note that this result is not
general and that there exist sufficient conditions that the output-based accounting dominates
the input-based accounting when the measurement noise is large. That is, when the noise is
high, input-based does not necessarily dominate output-based when both share a common
measurement noise.
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η2
m . Variable ξm captures the random component of manipulation costs.13

From the earlier results, the market response to the accounting report can
be positive or negative. Then, with accounting manipulation, the firm can
benefit from adjusting the accounting report upwards or downwards, at the
margin. We next introduce the definition of an equilibrium for the setup
with accounting manipulation.

DEFINITION 2. An equilibrium relative to �= {z 1, wm} consists of an investment
function I m

w (·), a reporting policy wm(·), and a market pricing function P(·), such
that:

(i) Given P(·), the optimal investment function I m
w (·) and the reporting pol-

icy wm(·) maximize V (θ | I m
w (·), wm(·)) = E [−I m

w + β P (·) + (1 −
β)(z 1 + z 2) − c(wm)].

(ii) Given I m
w (·) and wm(·), the pricing function P(·) satisfies P = E [z 1 +

z 2 | �, I m
w (·), wm(·)].

We now analyze the equilibrium behavior of the firm under the accrual
basis accounting with manipulation.

THEOREM 5. If y OP = k
√

θ I + εOP and yIP = I + εIP , and c(wm) =
cm

2 (wm − y m − ξm)2 (m ∈ {OP , I P}), where k ∈ (0, 2) and using (6), there
exists a unique linear equilibrium relative to � = {z 1, wm}. It is given by

(i) an equilibrium linear pricing function:

P (z1, w
m) = am

w + bm × z1 + dm × wm, wher e

bOP = (1 + α)k2γOPσ 2σ 2
θ + (1 + α)σ 2υ2

OP + 2kγOPυ2
OPσ 2

θ

k2γOPσ 2σ 2
θ + σ 2υ2

OP + k2γOPυ2
OPσ 2

θ

,

dOP = [2 − (1 + α)k]kγOPσ 2σ 2
θ

k2γOPσ 2σ 2
θ + σ 2υ2

OP + k2γOPυ2
OPσ 2

θ

,

aOP
w = (2 − bOP )µ + (2 − kbOP − kdOP )

√
γOPθ0 − β(bOP )2

cOP
,

b IP = (1 + α)γ 2
IPσ 2σ 2

θ + (1 + α)σ 2υ2
IP + 2kγIPυ2

IPσ 2
θ

γ 2
IPσ 2σ 2

θ + σ 2υ2
IP + k2γIPυ2

IPσ 2
θ

,

dIP = [2 − (1 + α)k]γ
3
2

IPσ 2σ 2
θ

γ 2
IPσ 2σ 2

θ + σ 2υ2
IP + k2γIPυ2

IPσ 2
θ

,

aIP
w = (2 − b IP )µ + (2 − kbIP − √

γIP dIP )
√

γIPθ0 − β(dIP )2

c IP
,

υ2
m = σ 2

m + η2
m . (23)

13 See a similar assumption and more discussions of the cost structure in Dye and Sridhar
[2004a].
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(ii) an equilibrium investment function and an equilibrium reporting policy:

I m
w (θ) =

{
γmθ, if θ ≥ 0

0 if θ < 0,
where (24)

γOP =
(

1 − β + βk(bOP + dOP )
2

)2

, γIP =




1 − β + βkbIP

2
1 − βdIP




2

, (25)

wm = y m + ξm + βdm

cm
. (26)

According to the equilibrium reporting policy (the wm expression in equa-
tion 26), the equilibrium accounting report varies from the one without
accounting manipulation: The additional noise from a random variable ξm

is added as well as a fixed constant βdm

cm .
The market can perfectly calculate the fixed constant βdm

cm . (Parameters
β and cm are common knowledge, and dm is the equilibrium market re-
sponse to the accounting report.) The intercept of the pricing function am

w
is adjusted accordingly to “undo” the expected manipulation. The random
component of manipulation injects noise ξm into the accounting report. As
a result, accounting manipulation worsens the quality of accounting reports.
The pricing function is adjusted in a way that the variance of the measure-
ment noise (σ 2

m) in the previous equilibrium pricing function is replaced
by υ2

m , which equals the sum of σ 2
m and η2

m .

5.2 VALUE OF ACCOUNTING MANIPULATION

The accounting manipulation leads to a more noisy accounting measure
and a dead-weight loss (the manipulation cost to the firm). The latter cost is
incorporated into the following cost-benefit analysis of accounting manip-
ulation.

COROLLARY 2. Under output-based accounting, accounting manipulation al-
ways makes the firm worse off; under input-based accounting, a sufficient condition
for accounting manipulation to be value enhancing is the combination of (i) υ2

IP <

σ 2
θ and (ii) cIP · θ 0 is sufficiently high.

As we have shown, the performance of output-based accounting mono-
tonically decreases as the quality of the accounting report worsens. There-
fore, under output-based accounting, accounting manipulation reduces ef-
ficiency for two reasons. First, a more noisy accounting report induces less
efficient investment. Second, the firm incurs a manipulation cost c(wm).

However, with input-based accounting, the nonmonotonicity feature
makes it possible that the incremental noise due to manipulation may ben-
efit the firm. Recall that in figure 2, making the accruals more noisy can
improve efficiency when the accruals are “too” precise (σ 2

IP < σ 2
θ). Thus,
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if υ2
IP < σ 2

θ , the expected net project return strictly increases as a result of
accounting manipulation, provided that η2

IP is not too large.
Since the expected net project return is (2

√
γm − γm) · θ0, the higher θ 0

can magnify the gain from more efficient investment choices. The cost of
manipulation is

c(wIP ) = c IP

2

(
wIP − y IP − ξ IP )2 =

(
βdIP

)2

2c IP
.

A higher cIP can reduce the dead-weight loss from the firm’s myopic de-
cision. Thus, if cIP · θ 0 is sufficiently high, the cost of earnings management
is outweighed by the increase in the expected investment returns.14

Intuitively, when the actual investment made is measured too precisely, the
market pricing places too much valuation weight on the accounting report,
providing an unmitigated incentive to over- or underinvest. By allowing
accounting manipulation, more noise is injected into accounting reports
and the market reacts by reducing the valuation weight. As a result, less
pressure leads to less inefficient investment choices.15 Table 2 summarizes
the effect of accounting manipulation.

5.3 “REAL” VERSUS “ACCOUNTING” MANIPULATION

The above analysis points to a link between the so-called “real” earnings
management and “accounting” earnings management. Real management
typically refers to the firm’s discretionary choices that affect the firm’s cash
flow for the sole purpose of inflating reported performance. These choices
are not in the best interest of the shareholders. Accounting management
typically refers to the firm’s discretionary choices that affect the firm’s re-
ported performance by altering the accounting measurement process. In
our model, we interpret investment deviations from the first-best as an ex-
ample of real earnings management and accounting manipulation of y into
w as accounting earnings management.

14 It might also be interesting to compare the efficiency of discretionary accounting re-
ports with the basic cash flow setting. This takes the view that allowing either output-based or
input-based accounting measurement implicitly grants the firm the ability to manipulate its
accounting performance. In other words, accrual accounting and the manipulation option are
a bundle.

From Theorem 4, under output-based accounting, the investment is always more efficient
than in the cash flow setup, but manipulation always incurs positive costs c(wOP ). Whether
output-based accounting with manipulation is preferable to the cash flow setup depends on
the cost incurred and on benefits derived from the investment improvement. The same tension
exists under input-based cost accounting with manipulation. Specifically, input-based account-
ing with manipulation is more efficient than the cash flow setup when (1) υ2

IP > � and (2)
c · θ 0 is sufficiently high. On the other hand, input-based accounting with manipulation is less
efficient than the cash flow setup when υ2

IP < �.
15 This intuition does not follow when output-based accounting is used because when the

measurement noise is low, the actual investment only partially affects the accounting signal
(recall y OP = k

√
θ I + εOP ).
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T A B L E 2
The Effect of Accounting Manipulation for Different Accounting Regimes

Parameter Region

Accounting regime k > k∗ k < k∗

Output-based γOP > 1, ∂

∂υ2
OP

γOP > 0 γOP < 1, ∂

∂υ2
OP

γOP < 0

Input-based υ2
IP > σ 2

θ γIP > 1, ∂

∂υ2
IP

γIP > 0 γIP < 1, ∂

∂υ2
IP

γIP < 0

υ2
IP < σ 2

θ γIP < 1, ∂

∂υ2
IP

γIP < 0 γIP > 1, ∂

∂υ2
IP

γIP > 0

Under the output-based measure, our results indicate that accounting
earnings management always leads to more real management. They are
complements. This is because “accounting” management leads to more mis-
pricing. Under an input-based measure, a similar result is obtained when the
measurement noise is high. However, when noise is low (especially in the
region where investment efficiency increases in noise), accounting earn-
ings management leads to less mispricing, and more efficient investment
choices are made. Here accounting management is a substitute for real
management. The intuition is that the accounting management introduces
additional noise, which leads to less market reaction to the accounting re-
port. Less pressure on the accounting numbers mitigates over- and under-
investment incentives.

6. Extension II: Technology for Future Investments

In this section we modify the model to include a situation where the firm
technology may be re-used in the future. That is, from date-2 onwards, the
owners of the firm may generate future cash flow by investing in the firm
technology they have acquired on date-1. In other words, the owners have
an option to invest and will exercise the option if the technology turns out
to be profitable. In turn, on date-1, the capital market not only prices the
cash flows generated from the date-0 investment, it also prices the value of
owning the technology that produces future cash flows.16

6.1 MODEL MODIFICATIONS

To simplify the problem, we change the model as follows. On date-0, the
firm chooses an investment level, denoted I1 ∈ R

+, based on the private
signal θ , same as before.

On date-1, shares of the firm are traded in a competitive capital market.
However, we assume there are no ongoing activities17 (x1 and x2) and only
one public signal λm (m ∈ {OP , I P}), which is produced by the accounting
information system, observable to outsiders. Similarly, we assume that the

16 We wish to thank the referee for suggesting that we pursue this extension.
17 This assumption is made for simplicity only. All results in this section survive if stochastic

ongoing activities are introduced as long as, as before, they are independent of other random
variables in the model.
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firm can choose either an input-based approach (IP) or an output-based
approach (OP) as the accounting measurement bases. For the output-based
measure,

λOP = 2
√

θ I1 + εOP , (27)

where εOP ∼N(0, σ 2
OP ). The output-based accounting reports provide a noisy

measurement of the total investment return. For the input-based measure,

λIP = I1 + εIP , (28)

where εIP ∼N(0, σ 2
IP ). The input-based accounting reports provide a noisy

measurement of the investment costs.
Finally, on date-2, the owners observe the return of the initial investment

2
√

θ I1, and choose additional investments into the existing technology. We
assume the present value of future cash flows is r θ, r ∈ R

+. A simple interpre-
tation of this representation is that the future profitability of the technology
is the same as θ , and the future owners make an optimal investment decision,
knowing the true θ . In this case, in every period this technology is viable,
the owners choose optimal It to maximize 2

√
θ It − It and generate peri-

odic profits equal to θ , assuming a positive θ . As a result, future profits can
be represented by an annuity (or perpetuity). Parameter r summarizes the
importance of these future cash flows relative to the cash flow generated
by the initial investment. If the technology is long-lived or if the owners’
discount rate is low, more firm value comes from future investments (or
“growth opportunities”), leading to a higher r .

A more complex, perhaps more realistic, interpretation involves a non-
stationary technology, or future firm owners subjected to additional market
frictions, or that the true θ is revealed to the owners gradually through
learning-by-doing. However, under these scenarios, it may be reasonable
to assume that the value of this reinvestment option is proportional to the
past profitability θ . As a result, we believe our characterization is a reason-
able approximation to capture the idea of this option without bringing in
additional complexity to the model.

6.2 EQUILIBRIUM UNDER MODIFIED MODEL

Now return to the pricing problem on date-1; without the ongoing cash
flows, the capital market must estimate the value of the date-2 cash flow
generated by past investment and the value of the potential future cash
flows generated by future investments. As a result, the market price is equal
to the expected value of the cash flow from existing projects plus the present
value of the reinvestment option, that is

P = E [2
√

θ I1 + r θ | �].

As before, when making the initial investment on date-0, the firm is
motivated by both the long-term interest and the short-term interest. The
convex combination of these concerns is the same as the basic setup, that
is,−I1 + β P + (1 − β)(2

√
θ I1 + r θ).
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We now analyze the equilibrium behavior of the firm with technology for
future investments.

THEOREM 6. If λOP = 2
√

θ I1 + εOP and λIP = I 1 + εIP , and using (6), there
exists a unique linear equilibrium relative to � = {λm}. It is given by

(i) an equilibrium linear pricing function:

P (λm) = am
λ + bm

λ × λm, where

bOP
λ =

(
4γ ′

OP + 2r
√

γ ′
OP

)
σ 2

θ

4γ ′
OPσ 2

θ + σ 2
OP

,

aOP
λ =

(
2
√

γ ′
OP + r − 2

√
γ ′

OP bOP
λ

)
θ0,

b IP
λ =

(
2
√

γ ′
IP + r

)
γ ′

IPσ 2
θ

(γ ′
IP )2σ 2

θ + σ 2
IP

,

aIP
λ =

(
2
√

γ ′
IP + r − γ ′

IP b IP
λ

)
θ0; (29)

(ii) an equilibrium investment function:

I m
1 (θ) =

{
γ ′

mθ, if θ ≥ 0

0 if θ < 0,
where

γ ′
OP = (

1 − β + βbOP
λ

)2
, γ ′

IP =
(

1 − β

1 − βb IP
λ

)2

. (30)

With a valuable technology for future investments, the share price in-
cludes the market estimate of how much the firm will benefit from the
technology ever after. Higher r indicates the firm is able to generate more
future cash flows for a given positive θ . Thus, the market response coefficient
bm

λ is strictly increasing in r . With a higher market response coefficient, the
firm has incentive to inflate the perceived profitability. This can be achieved
by inflating initial investment, which increases the mean of either the input-
based measure or the output-based measure. Therefore, the investment
decision I m

1 is strictly increasing in the parameter r .
Since the accounting measurements may not be perfectly precise, the

market also responds to the measurement noise. As the variance of mea-
surement noise σ 2

m gets higher, the accounting reports are less informative,
leading to a less responsive market price to the accounting report and the
firm has less incentive to overinvest. Therefore, the initial investment (I m

1 ) is
strictly decreasing in the measurement noise σ 2

m . Because the two exogenous
parameters (r and σ 2

m) provide opposite incentives of investment choices,
there exists a knife-edge case that the two opposite effects exactly offset each
other, leading to the first-best initial investment.
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6.3 COMPARING OUTPUT-BASED AND INPUT-BASED ACCOUNTING MEASURES

The following corollary summarizes the properties of the equilibrium.

COROLLARY 3. If λOP = 2
√

θ I1 + εOP and λIP = I 1 + εIP ,

(i) if σ 2
OP = 2r σ 2

θ , investment choice is the first-best level, and
(ii) if σ 2

IP = (r + 1)σ 2
θ , investment choice is the first-best level.

(iii) If r > 1(r < 1), there exists a �∗ that lies in the interval between
(r + 1)σ 2

θ and 2r σ 2
θ , such that a sufficient condition for input-based ac-

counting to be more efficient than output-based accounting is σ 2
IP = σ 2

OP ∈
[(r + 1)σ 2

θ , �∗](σ 2
IP = σ 2

OP ∈ [�∗, (r + 1)σ 2
θ ]).18

The presence of the reinvestment option changes the market pricing
and (thus) initial investment decisions. Compared with the correspond-
ing results in section 4 (see Theorem 4), the results are different in two
ways. First, even with the output-based measure, investment efficiency is no
longer monotonic in measurement noise. In particular, the output-based
accounting measure does not perform best when the measure is noiseless.
Second, the parameter r , a growth potential index so to speak, is important
in determining economic efficiency, in addition to accounting rules and
measurement errors. Intuitively, as r increases, the market imposes more
pressure on the accounting reports, and the firm is motivated to inflate the
reports.19

To see the trade-off precisely, we briefly review the mispricing structure.
Substituting the pricing function (P = aOP

λ + bOP
λ λOP ) into the mispricing

expression, we have

EεOP

[
P − (2

√
θ I1 + r θ)

∣∣ θ]
= EεOP

[
aOP

λ + bOP
λ

(
2
√

θ I1 + εOP ) − (
2
√

θ I1 + r θ
) ∣∣ θ]

= [
bOP

λ − 1
]
2
√

θ I1 − r θ + aOP
λ + EεOP

[
bOP

λ εOP
∣∣ θ]

.

The investment choice is first-best when the mispricing does not depend
on the investment choice. Under the output-based measure, the mispricing
is not a function of the initial investment only if the market response to
the accounting measure is equal to unity (i.e., bOP

λ = 1). However, in this
modified model, a noiseless output-based measure will no longer lead to a
unity market response. This is because, in this modified model, the market is
pricing two streams of cash flows. First, for cash flows due to the initial invest-
ment, a unity response is needed with a noiseless measure. Second, for cash
flows due to future investments, a nonzero response is needed. Combined,
the total response would be greater than unity in the noiseless case, thus
providing ex ante incentive to deviate from the first-best investment.

18 When r = 1, we can show that output-based accounting is (weakly) more efficient than
input-based accounting once β is small enough.

19 When r = 0, the model reverts back to the basic model with the output-based model
performing best when noiseless.
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FIG. 3.—Investment efficiency in the modified model (r = 2).

Figure 3 provides an illustration of the results in Corollary 3. Compared to
Figure 2, the main difference is that the efficiency under the output-based
measure peaks when the variance of the measure is not zero. Furthermore,
when r > 1, the peak occurs to the right of the peak under the input-based
measure. This is because, relative to the input-based measure regime, a
higher r imposes more market pressure on the accounting measure, thus
leading a more “distorted” investment choice.

Finally, the extension leads us to rethink the subtleties of output-based ac-
counting when (reinvestment) option value is important. From an account-
ing measurement perspective, λOP can be viewed as a measure of “value in
use,” ignoring the option value of future use (through future investments).
These measures do exist in accounting practices, such as the re-valuation ex-
ercise in accounting for asset impairment. However, one may argue that the
option value would be impounded in a would-be exchange price of the as-
set in question. Fair-value accounting measures, as proposed by the recent
FASB exposure draft, may be close to having this characteristic. One can
even argue that these measures already exist in accounting practices, such
as the use of market value in initial and re-valuation of certain assets and in
the initial recording of goodwill (provided the market prices are reflective
of various option values).

7. Conclusion

In this paper, we explore the trade-offs between two dominant account-
ing measurement bases: input-based measures and output-based measures.
We discover that the trade-offs go beyond relevance and reliability issues
commonly mentioned in accounting debates. We show that these two mea-
sures affect investment incentives in fundamentally different ways. The
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output-based measures have a natural advantage in aligning the firm and
social investment incentives through a dampening effect, which limits over-
and underinvestment tendencies. However, high levels of noise and account-
ing manipulation, which are typically associated with output-based mea-
sures, may make output-based accounting far from a perfect solution to all
accounting problems.

With an input-based accounting measurement basis, accounting num-
bers are less comprehensive, but their advantages are a lower level of noise
and fewer accounting manipulation opportunities. In fact, being less com-
prehensive makes small but positive noise and/or manipulation desirable.
Based on our analysis, the move toward output-based accounting, such as a
fair-value principle, may not be beneficial and requires more care and more
extensive debates.

Our model is simple. Future works may benefit from including operating
and financial choices and from analyzing more general settings with het-
erogeneous firms where accounting standards are central to an economic
analysis of accounting.

APPENDIX

Proof of Limit Properties of the Approximation Assumption. In this part of the
appendix, we show that the approximation error, denoted AE , gets smaller
and approaches zero as the mean of z increases, for every realized value of
the conditioning variable, y + az. To prove this formally, notice for every
W ≡ y + az,

AE(W) =
∫

z>0

∫
x
(x + z) f (x, z | y + az) dx dz + G(0 | y + az)

∫
x
x f (x | y) dx

−
∫

z

∫
x
(x + z) f (x, z | y + az) dx dz

= G(0 | y + az)
∫

x
x f (x | y) dx −

∫
z<0

∫
x
(x + z) f (x, z | y + az) dx dz,

(A1)

and we need to prove both components of the AE(W ) expression approach
zero as E[z] increases to every realization of W ≡ y + az.

By assumption, the joint distribution of x and y is[
x
y

]
∼ N

([
µx

µy

]
,

[
σ 2

x σxy

σxy σ 2
y

])

and z � N[µz , σ 2
z ] is independent of x and y. Hence, the joint distribution

of x, z, and y + az is
 x

z
y + az


 ∼ N





 µx

µz

µy + aµz


 ,




σ 2
x 0 σxy

0 σ 2
z aσ 2

z

σxy aσ 2
z σ 2

y + a2σ 2
z





 .
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By the property of normal density function, the conditional distribution
of z given any realization of W ≡ y + az is

z | W � N

[
µz + aσ 2

z

σ 2
y + a2σ 2

z
(W − µy − aµz),

σ 2
z σ 2

y

σ 2
y + a2σ 2

z

]
. (A2)

To simplify the notation, we denote the above by z | W � N[µz ′ , σ 2
z ′]. And

the joint conditional distribution of x and z given any realization of W
is[

x
z

∣∣∣∣∣ W

]

∼ N







µx + σxy

σ 2
y + a2σ 2

z
(W − µy − aµz)

µz + aσ 2
z

σ 2
y + a2σ 2

z
(W − µy − aµz)


 ,




σ 2
x − σ 2

xy

σ 2
y + a2σ 2

z
− σxy aσ 2

z

σ 2
y + a2σ 2

z

− σxy aσ 2
z

σ 2
y + a2σ 2

z

σ 2
z σ 2

y

σ 2
y + a2σ 2

z





 .

(A3)

Again, to simplify, we denote the above by[
x
z

∣∣∣∣ W
]

∼ N

([
µx ′

µz ′

]
,

[
σ 2

x ′ σxz

σxz σ 2
z ′

])
.

Using (A2), the conditional cumulative density function of z, G(z | W) =
�( z − µz′

σz′
), where �(·) is the standard normal cumulative distribution func-

tion (cdf). Hence, G(0 | W) = �(−µz′
σz′

). If µz increases, −µz′
σz′

goes to nega-

tive infinity because µz ′ ≡ σ 2
y

σ 2
y + a2σ 2

z
µz + aσ 2

z
σ 2

y + a2σ 2
z
(W − µy ) for any given W .

By the property of standard normal cumulative density function (�(·)),
�(−µz′

σz′
) → 0 as −µz′

σz′
→ −∞. Therefore, the first component of (A1),

G(0 | W)
∫

x x f (x | y) dx, goes to zero.
Using (A3), the second component of (A1) is∫

z<0

∫
x
(x + z) f (x, z | W ≡ y + az) dx dz

=
∫

z<0

∫
x
(x + z) f (z | W) f (x | z, W) dx dz

=
∫

z<0

[∫
x
xf (x | z, W) dx + z

∫
x

f (x | z, W) dx
]

f (z | W) dz

=
∫

z<0

[
µx ′ + σxz

σ 2
z ′

(z − µz ′) + z
]

f (z | W) dz

=
[
µx + σxy

σ 2
y

(W − µy )

]
G(0 | W) +

(
1 − aσxy

σ 2
y

) ∫
z<0

zf (z | W) dz.
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Similar to the first component, the first part of the second component,
[µx + σxy

σ 2
y

(W − µy )]G(0 | W), also approaches zero when µz increases.
Finally, we need to show the second part of the second component,∫

z<0 z f (z | W) dz, goes to zero as µz increases.

∫
z<0

z f (z | W) dz = 1

σz ′
√

2π

∫ 0

−∞
z exp

(
−(z − µz ′)2

2σ 2
z ′

)
dz

= 1

σz ′
√

2π

∫ 0

−∞
z exp

(
− z2

2σ 2
z ′

)

· exp
(

zµz ′

σ 2
z ′

)
· exp

(
− µ2

z ′

2σ 2
z ′

)
dz.

Because z is always negative, exp( zµz′
σ 2

z′
) must be positive and always

smaller than one. So the absolute value of the above expression must be

smaller than the absolute value of 1
σz′

√
2π

∫ 0
−∞ z exp(− z2

2σ 2
z′

) · exp(− µ2
z′

2σ 2
z′

) dz =
σz′√
2π

exp(− µ2
z′

2σ 2
z′

). As the mean of µz increases, − µ2
z′

2σ 2
z′

goes to negative infinity.

Hence, the absolute value of 1
σz′

√
2π

∫ 0
−∞ z exp(− z2

2σ 2
z′

) · exp(− µ2
z′

2σ 2
z′

) dz goes to

zero, and thus, the second part of the second component,
∫

z<0 z f (z | W) dz,
also approaches zero.

To summarize, we have shown for every W ≡ y + az, as µz increases,
AE(W ) approaches zero. �

Proof of Theorem 1. We begin with the linear pricing conjecture:

P (z1) = a + b z1.

The manager’s maximization program becomes:

Choose I(θ) to max
∫

θ

V (θ | I(·))G(θ) dθ

=
∫

θ

Ex1x2 [−I + β P + (1 − β)(z1 + z2)]G(θ) dθ

= −I + β

(
a + b

(
µ +

∫
θ

k
√

θ I G(θ) dθ

))

+ (1 − β)
(

2µ +
∫

θ

2
√

θ I G(θ)dθ

)
.
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The point-wise first-order condition with respect to I is, for θ > 0,

0 = −1 +

(
1 − β + βbk

2

) √
θ

√
I

I =
(

1 − β + βbk
2

)2

θ

=
(

1 + β

(
bk
2

− 1
))2

θ,

and for θ < 0, I = 0. So, it must be the case that

δ =
(

1 + β

(
bk
2

− 1
))2

.

Given that δ and k are constants,(
x1 + x2 + 2

√
δθ

x1 + k
√

δθ

)

∼ N

((
2µ + 2

√
δθ0

µ + k
√

δθ0

)
,

[
2(1 + α)σ 2 + 4δσ 2

θ (1 + α)σ 2 + 2kδσ 2
θ

(1 + α)σ 2 + 2kδσ 2
θ σ 2 + k2δσ 2

θ

])
.

So, we have the approximate pricing function, using (6):

P = E[z1 + z2 | z1] = E [x1 + x2 + 2
√

θ I | x1 + k
√

θ I]

∼= E[x1 + x2 + 2θ
√

δ | x1 + kθ
√

δ]

= 2µ + 2
√

δθ0 + (1 + α)σ 2 + 2kδσ 2
θ

σ 2 + k2δσ 2
θ

(z1 − µ − k
√

δθ0)

= (1 − α)σ 2 + 2(k2 − k)δσ 2
θ

σ 2 + k2δσ 2
θ

µ + (2 − (1 + α)k)σ 2

σ 2 + k2δσ 2
θ

√
δθ0

+ (1 + α)σ 2 + 2kδσ 2
θ

σ 2 + k2δσ 2
θ

z1.

So, it must be the case that

a = (2 − b)µ + (2 − kb)
√

δθ0,

b = (1 + α)σ 2 + 2kδσ 2
θ

σ 2 + k2δσ 2
θ

.

To show the existence of δ and b, substituting b into δ, and simplifying, we
have (√

δ − 1
)

·
(

k2δ
σ 2

θ

σ 2
+ 1

)
= β

[
k(1 + α)

2
− 1

]
.
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As β ∈ [0, 1], k ∈ [0, 2], and α ∈ (−1, 1), the range of the right-hand
side is from −1 to 1. As δ > 0, and all of the functions are continuous, the
left-hand side covers the range from −1 to +∞. Therefore, there is at least
one positive root of δ.20 �

Proof of Theorem 2. Suppose the manager chooses the first-best investment
δ = 1. Correspondingly, using (7), (8), and (9) the market pricing function
would be

P (z1) = a + bδ=1 × z1, where

bδ=1 = (1 + α)σ 2 + 2kσ 2
θ

σ 2 + k2σ 2
θ

, a = (2 − bδ=1)µ + (2 − kbδ=1)θ0.

To sustain the equilibrium, the manager’s reaction to bδ=1 = (1 + α)σ 2 + 2kσ 2
θ

σ 2 + k2σ 2
θ

must indeed be to set δ = 1, which is the first-best investment level. That is,
it must be the case that

δ|bδ=1,k=k∗ = 1

Using (11), we have

δ|bδ=1,k=k∗ =
(

1 + β

(
bδ=1k∗

2
− 1

))2

=


1 + β




(1 + α)σ 2 + 2
2

1 + α
σ 2

θ

σ 2 +
(

2
1 + α

)2

σ 2
θ

·
2

1 + α

2
− 1







2

= 1.

Generally, we rewrite bk as the following

bk = (1 + α)σ 2 + 2kδσ 2
θ

σ 2 + k2δσ 2
θ

· k

= 2 + [(1 + α)k − 2]σ 2

σ 2 + k2δσ 2
θ

.

So

δ =
(

1 + β

(
bk
2

− 1
))2

=
(

1 + β

2
· [(1 + α)k − 2]σ 2

σ 2 + k2δσ 2
θ

)2

.

Now it is clear that if k > k∗, δ > 1, and k < k∗, δ < 1. �

20 Technically, in some rare cases (when the right-hand side is very close to −1), the function
could have three positive roots of δ. Then, in our study, we only consider the root that is closest
to one. That is, in multiple equilibrium cases, the economy chooses the most efficient one.
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PROPOSITION 1. Comparative statics in the basic setup.

1. δ and b strictly increase in α;
2. When k > k∗(k < k∗), δ and b strictly decrease in σ 2

θ

σ 2 (strictly increase in σ 2
θ

σ 2 );
and

3. When k > k∗(k < k∗), δ strictly increases in β (strictly decreases in β). Also
b strictly decreases in β for any k �= k∗.

Proof of Proposition 1. Using the pricing function (8), substituting b into
the manager’s investment decision (11), we have the following equation,
which has to hold in equilibrium.(√

δ − 1
)

·
(

k2δ
σ 2

θ

σ 2
+ 1

)
= β

[
k(1 + α)

2
− 1

]
.

The left-hand side increases monotonically in δ21, and is independent of
α. The right-hand side increases monotonical in α, and is independent
of δ. It is easy to see that δ strictly increases in α. By (11), b strictly in-
creases in δ, therefore, b strictly increases in α. From Theorem 2, δ > 1
when k > k∗. Given the equation above, the right-hand side is positive as
k > k∗. As σ 2

θ

σ 2 increases, δ has to decrease to let the equation sustain. Sim-

ilarly if k < k∗, δ increases in σ 2
θ

σ 2 . By (11), b changes in the same way as δ.
As we show above, the left-hand side increases monotonical in δ. When
k > k∗, the right-hand side increases in β, so δ strictly increases in β.
Similarly, δ strictly decreases in β when k < k∗, and δ is equal to one re-
gardless of β when k = k∗. To analyze the change in b, rewrite (8) as the
following

b = 2
k

+
(1 + α) − 2

k

1 + k2δ
σ 2

θ

σ 2

.

If k > k∗, (1 + α) − 2
k > 0. As β increases, δ increases from the above analy-

sis. Therefore, b decreases in β. Similarly, b also strictly decreases in β when
k < k∗, and is equal to 1 + α regardless of β when k = k∗. �

Remarks: The first result is quite straightforward. As α increases, the short-
term and long-term cash flows from the ongoing activities are more corre-
lated. Therefore, the market response coefficient b increases, and the firm
has an incentive to invest more to inflate the market price. That is, δ in-
creases.

Combined with Theorem 2, the second comparative static result shows
that a higher σ 2

θ

σ 2 can induce a more efficient investment level (i.e., pushing

21 The monotonicity is based on the previous assumption that in the case of multiple roots
for the equilibrium δ, the economy chooses the root with which the investment is most efficient.
See proof of Theorem 1.
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δ closer to one). As σ 2 gets lower, the ongoing cash flows are less noisy,
making the aggregate cash flow report (z1 = x1 + k

√
θ I) more informative

about the short-term investment return (k
√

θ I). Intuitively, it is easier for
the market to identify the first-period investment return. (Technically, the
market response coefficient is closer to 2

k as σ 2
θ

σ 2 increases.) As a result, the
short-term investment return is less mispriced while the ongoing cash flow
is more mispriced. However, given that the mispricing of the ongoing cash
flow does not have any negative effect on the real investment decision, an
increase in σ 2

θ

σ 2 improves the investment efficiency. In the extreme, when σ 2

approaches zero, the equilibrium achieves first-best results.
With short-term pressure (β > 0), the firm investment deviates from the

first-best (by Theorem 2). The magnitude of the deviation increases in mar-
ket pressure (β). As the firm makes less efficient investment under more
market pressure, the market responds less to the cash flow report (b de-
creases in β) because the value lost due to inefficient investment increases
in β.

Proof of Theorem 3. Suppose the firm chooses an input-based accounting
system, based on the linear conjecture

P
(
z1, y IP ) = aIP + b IP

z × z1 + b IP
y × y IP .

The manager maximizes the expected payoff:

Choose I(θ)to max
∫

θ

V (θ | I(·))G(θ) dθ

=
∫

θ

Ex1x2 [−I + β P + (1 − β)(z1 + z2)]G(θ) dθ

= −I + β

(
aIP + b IP

z

(
µ +

∫
θ

k
√

θ I G(θ) dθ

)
+ b IP

y I
)

+ (1 − β)
(

2µ +
∫

θ

2
√

θ I G(θ)dθ

)
.

The point-wise first-order condition with respect to I is for θ > 0, and we
have

0 = −1 +

(
1 − β + βkbIP

z

2

) √
θ

√
I

+ βb IP
y ,

I IP =




1 − β + βkbIP
z

2
1 − βb IP

y




2

θ,

and for θ < 0, I IP = 0.
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So it must be the case that

δIP =




1 − β + βkbIP
z

2
1 − βb IP

y




2

.

Using (21) and (22), we have




x1 + x2 + 2
√

δIPθ

x1 + k
√

δIPθ

εIP + δIPθ




is normally distributed with mean




2µ + 2
√

δIPθ0

µ + k
√

δIPθ0

δIPθ0




and variance


2(1 + α)σ 2 + 4δIPσ 2
θ (1 + α)σ 2 + 2kδIPσ 2

θ 2δ
3
2
IPσ 2

θ

(1 + α)σ 2 + 2kδIPσ 2
θ σ 2 + k2δIPσ 2

θ kδ
3
2
IPσ 2

θ

2δ
3
2
IPσ 2

θ kδ
3
2
IPσ 2

θ δ2
IPσ 2

θ + σ 2
IP


 .

Using the approximation assumption (6), the pricing function becomes

P = E
[
z1 + z2

∣∣ z1, y IP ] = E
[
x1 + x2 + 2

√
θ I

∣∣ x1 + k
√

θ I , I + εIP ]
∼= E

[
x1 + x2 + 2θ

√
δ
∣∣ x1 + kθ

√
δ, δθ + εIP ]

= 2µ + 2
√

δIPθ0 +
[
(1 + α)σ 2 + 2kδIPσ 2

θ , 2δ
3
2
IPσ 2

θ

]

·

σ 2 + k2δIPσ 2

θ δ
3
2
IPσ 2

θ

kδ
3
2
IPσ 2

θ δ2
IPσ 2

θ + σ 2
IP




−1

·
[

z1 − µ − k
√

δIPθ0

y IP − δIPθ0

]

= 2µ + 2
√

δIPθ0 + (1 + α)δ2
IPσ 2σ 2

θ + (1 + α)σ 2σ 2
IP + 2kδIPσ 2

IPσ 2
θ

δ2
IPσ 2σ 2

θ + σ 2σ 2
IP + k2δIPσ 2

IPσ 2
θ

·
(

z1 − µ − k
√

δIPθ0

)
+ [2 − (1 + α)k]δ

3
2
IPσ 2σ 2

θ

δ2
IPσ 2σ 2

θ + σ 2σ 2
IP + k2δIPσ 2

IPσ 2
θ

· (
y IP − δIPθ0

)
.
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So it must be the case that

bIP
z = (1 + α)δ2

IPσ 2σ 2
θ + (1 + α)σ 2σ 2

IP + 2kδIPσ 2
IPσ 2

θ

δ2
IPσ 2σ 2

θ + σ 2σ 2
IP + k2δIPσ 2

IPσ 2
θ

,

b IP
y = [2 − (1 + α)k]δ

3
2
IPσ 2σ 2

θ

δ2
IPσ 2σ 2

θ + σ 2σ 2
IP + k2δIPσ 2

IPσ 2
θ

,

aIP = (
2 − b IP

z

)
µ + (

2 − kbIP
z −

√
δIP b IP

y

)√
δIPθ0.

To show the existence of δ IP , bIP
z , and bIP

y , substituting bIP
z (19) and bIP

y
(20) into the investment decision (22), we obtain(√

δIP − 1
)

·
(

k2δIP
σ 2

θ

σ 2
+ 1 + δ2

IPσ 2
θ

σ 2
IP

)
= β

[
k(1 + α)

2
− 1

]
·
(

1 − δ2
IPσ 2

θ

σ 2
IP

)
.

As δ IP ∈ (0, +∞), and all functions are continuous, the left-hand side
at least covers the range from −1 to +∞. The range of the left-hand side
could be larger depending on the parameter space. The right-hand side (a
parabola) at least covers the range (β[ k(1 + α)

2 − 1], −∞). We showed earlier
that the range of β[ k(1 + α)

2 − 1] is from −1 to 1. So the left-hand side curve
and the right-hand side curve must intersect at least once in δ IP ∈ (0, +∞).
Therefore, there is at least one positive root of δ IP .

Using a similar method, we obtain the linear equilibrium under output-
based accounting. �

Proof of Corollary 1. From Theorem 3, using the pricing function (16) and
substituting bOP

z (17) and bOP
y (18) into the manager’s investment decision

(22), we obtain the following equation, which has to hold in equilibrium
under output-based accounting,(√

δOP − 1
)

·
(

k2δOP
σ 2

θ

σ 2
OP

+ 1 + k2δOP
σ 2

θ

σ 2

)
= β

[
k(1 + α)

2
− 1

]
. (A4)

The second parenthesis on the left-hand side of the equation is always
positive and decreases in σ 2

OP . So, the absolute value of (
√

δOP − 1) must
increase in σ 2

OP (given that the right-hand side is a constant), which indicates
better investment choices as σ 2

OP is lower. As the sign of (
√

δOP − 1) is the
same as the right-hand side, δOP increases (decreases) in σ 2

OP when k >

k∗ (k < k∗).
For input-based accounting, we substitute bIP

z (19) and bIP
y (20) into the

manager’s investment decision (22), and we obtain the following equation:(√
δIP − 1

)
·
(

k2δIP
σ 2

θ

σ 2
+ 1 + δ2

IPσ 2
θ

σ 2
IP

)
= β

[
k(1 + α)

2
− 1

]
·
(

1 − δ2
IPσ 2

θ

σ 2
IP

)
.

(A5)

Suppose k > k∗. The right-hand side must be positive when σ 2
IP is suffi-

ciently high, which means the left-hand side is positive or δ IP > 1 or the
firm overinvests. As σ 2

IP is reduced, the right-hand side decreases and the
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second parenthesis on the left- hand- side increases. Thus, to maintain equa-
tion (A5), δ IP has to be reduced, mitigating the investment inefficiency.
Once σ 2

IP is reduced to σ 2
θ , the equilibrium reaches the first-best, δ IP = 1.

However, as σ 2
IP continues to decrease past σ 2

θ , the right-hand side turns
negative, and δ IP has to be lower than one to sustain equation (A5). The
investment δ IP becomes less as σ 2

IP continues to decrease. We get similar
results in the case of k < k∗. Thus, δ IP increases (decreases) in σ 2

IP when
k > k∗ (k < k∗).

From Theorem 3, using (17), (18), (19), and (20), we can readily find
the effect of σ 2

m on the market response coefficients bm
z and bm

y . �

Proof of Theorem 4. To prove claim (i), substituting σ 2
OP = 0 into (17) and

(18), we have bOP
z = 1 + α and bOP

y = 2
k − (1 + α). Then using (22), the

investment level is first-best (δOP = 1).
To prove claim (ii), suppose that the manager chooses the first-best in-

vestment level I = θ under input-based accounting. Correspondingly, using
(16), (19), and (20), the market pricing function would be

P IP
(
z1, y IP

) = aIP + b IP
z,δa=1 × z1 + b IP

y ,δa=1 × y IP , where

b IP
z,δa=1 = (1 + α)σ 2

(
σ 2

θ + σ 2
IP

) + 2kσ 2
IPσ 2

θ

σ 2
(
σ 2

θ + σ 2
IP

) + k2σ 2
IPσ 2

θ

,

b IP
y ,δa=1 = [2 − (1 + α)k]σ 2σ 2

θ

σ 2
(
σ 2

θ + σ 2
IP

) + k2σ 2
IPσ 2

θ

.

To sustain the equilibrium, the manager’s reaction to b IP
z,δa=1 and b IP

y ,δa=1
must, indeed, be to set the investment at the first-best level. That is, it must
be the case that

δIP |b IP
z,δa=1,b

IP
y ,δa=1

= 1.

By assuming σ 2
IP = σ 2

θ , we have

b IP
z,δa=1 = 2(1 + α)σ 2σ 2

θ + 2kσ 4
θ

2σ 2σ 2
θ + k2σ 4

θ

,

b IP
y ,δa=1 = [2 − (1 + α)k]σ 2σ 2

θ

2σ 2σ 2
θ + k2σ 4

θ

.

Using (22), we have

δIP =




1 − β + βkbIP
z

2
1 − βb IP

y




2

.
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Substituting b IP
z,δa=1 and b IP

y ,δa=1 into the above expression yields

δIP |b IP
z,δa=1,b

IP
y ,δa=1

=




1 + β
[(1 + α)k − 2]σ 2σ 2

θ

2σ 2σ 2
θ + k2σ 4

θ

1 − β
[2 − (1 + α)k]σ 2σ 2

θ

2σ 2σ 2
θ + k2σ 4

θ




2

.

= 1.

Claim (iii) and (iv) compare the investment efficiency under different
accounting bases. Recall the expected net return of the project is, using
(21)

E[Rm] = E
[

f1(θ, I m) + f2(θ, I m) − I m]
= E[2

√
θ I m − I m] =

[
1 −

(√
δm − 1

)2
]

· θ0. (A6)

It is clear from (A6) that E [Rm] is single peaked at δm = 1, m ∈ {I P , OP}.
To prove claim (iii), invoke claim (ii) of Theorem 4: δ IP = 1 when σ 2

IP = σ 2
θ ;

and invoke claim (ii) of Corollary (1): δ IP is monotonic in σ 2
IP (increasing or

decreasing depending on k). Combined, we must have that E[RIP ] is single
peaked at σ 2

IP = σ 2
θ regardless of k.

Next, we compare E[RIP ] in the two extreme cases: (1) the case without
the input-based accounting measures (or the case σ 2

IP = +∞ by Corollary 1
claim (i)), and (2) the case of perfectly precise input-based accounting
measures (σ 2

IP = 0). Substituting σ 2
IP = +∞ into (19) and (20), we have

b IP
z = (1 + α)σ 2 + 2kδIP σ 2

θ

σ 2 + k2δIP σ 2
θ

, and bIP
y = 0. Then using (22), we have

√
δIP = 1 +

β

[
k(1 + α)

2
− 1

]

k2δIP
σ 2

θ

σ 2
+ 1

, when σ 2
IP → ∞.

Substitute into (A6), the expected project return is

E
[
RIP

∣∣ σ 2
IP → ∞] =


1 −

β2

[
k(1 + α)

2
− 1

]2

(
k2δIP

σ 2
θ

σ 2
+ 1

)2


 · θ0.

Similarly, for a perfect input-based accounting, substituting σ 2
IP = 0 into

(19) and (20), we have bIP
z = 1 + α, and b IP

y = [2 − (1 + α)k]δ
− 1

2
IP . Then

using (22),

√
δIP = 1 − β

[
k(1 + α)

2
− 1

]
, when σ 2

IP = 0.
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Substitute into (A6), the expected project return is

E
[
RIP

∣∣ σ 2
IP = 0

] =
[

1 − β2
[

k(1 + α)
2

− 1
]2

]
· θ0.

Because (k2δIP
σ 2

θ

σ 2 + 1)2 > 1, so E [RIP | σ 2
IP → ∞] > E [RIP | σ 2

IP = 0].
Therefore, the expected project return in the basic setting is higher than
the return with precise input-based reports. Because δ IP is continuous in
σ 2

IP , so that E [RIP ] is continuous in σ 2
IP , there must exist a �(0 < � < σ 2

θ)
such that for any σ 2

IP > �(σ 2
IP < �), the input-based accounting is more

(less) efficient than the basic cash flow reporting system.
To prove claim (iv), a similar argument shows that E[RIP ] is single peaked

at σ 2
OP = 0. Therefore, E [ROP ] monotonically decreases in σ 2

OP ∈ [0, +∞)
regardless of k. Given the following arguments:

� E [RIP ] is strictly increasing in σ 2
IP ∈ [0, σ 2

θ] and reaches E [RIP ] = 1
(the first-best) when σ 2

IP = σ 2
θ ;

� E [ROP ] is strictly decreasing in σ 2
OP ∈ [0, σ 2

θ] ⊂ [0, +∞) and reaches
E [ROP ] = 1 (the first-best) when σ 2

OP = 0;
� Both E [RIP ] and E [ROP ] are continuous in σ 2

m over [0, +∞);

there must exist a �′ (� < �′ < σ 2
θ), such that for any σ 2

IP ∈ [�′, σ 2
θ ] and

σ 2
OP > �′, E [RIP ] > E [ROP ], as claimed by (iv) of Theorem (4). �
Proof of Theorem 5. After privately observing the unmanipulated ym , and

the realization of cash flow (z1) and cost parameter (ξm), the manager/firm
chooses the accounting report wm following the optimization program be-
low, with an equilibrium conjecture of linear market pricing function P (z 1,
wm) = am

w + bm × z 1 + dm × wm :

max
wm

β P
(
z1, w

m) + (1 − β)Ez2 [z1 + z2] − c(wm).

Given the linear pricing and quadratic personal cost function, the solution
to the optimization problem is well defined and yields a simple solution that,
in equilibrium, the following holds:

wm = y m + ξm + βdm

cm
.

Therefore, the reported accounting number is simply a noised-up version
of the underlying, unmanipulated number. Precisely, the reported account-
ing number has the following property:

E[wm] = E[y m] + βdm

cm
,

Var[wm] = Var[y m] + Var[ξm] = σ 2
m + η2

m .

The rest of the proof follows exactly as the proof of Theorem 3, substi-
tuting υ2

m with Var[wm] = σ 2
m + η2

m . Note the adjustment to E[ym] will only
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affect the intercept part of the pricing function (am
w ), which has no incentive

effects on the initial investment. �
Proof of Corollary 2. Given Theorem 5, we know adding an account-

ing manipulation option would increase the noise of the reported ac-
counting number. Under the output-based accounting measures, given
Corollary 1-(ii) and Theorem 4-(i), this leads to a loss of welfare on two
fronts: (1) less efficient investment decisions and (2) nonzero (personal)
cost of manipulation activities. So accounting manipulation always makes
the firm worse off.

Under the input-based accounting measure, if υ2
IP < σ 2

θ , adding noise
to the accounting number improves investment efficiency, given Corollary
1-(ii) and Theorem 4-(ii). If cIP · θ 0 is high enough, the personal cost is
small enough (because cIP is large) and the benefit of improved investment
efficiency is large enough (because θ 0 is large). So the investment bene-
fit outweights the loss due to manipulation costs. Therefore, accounting
manipulation is value enhancing. �

Proof of Theorem 6. Suppose the firm chooses an input-based accounting
system, based on the linear conjecture

P (λm) = am
λ + bm

λ × λm

the manager maximizes the expected payoff:

Choose I1(θ) to max
∫

θ

V (θ | I1(·))G(θ) dθ

=
∫

θ

E
[ − I1 + β P + (1 − β)(2

√
θ I1 + r θ)

]
G(θ) dθ

= −I1 + β
(
aIP

λ + b IP
λ I1

) + (1 − β)
(∫

θ

(2
√

θ I1 + r θ)G(θ) dθ

)
.

The point-wise first-order condition wrt I 1 is for θ > 0, we have

0 = −1 + (1 − β)
√

θ√
I

+ βb IP
λ ,

I IP
1 =

(
1 − β

1 − βb IP
λ

)2

θ ;

and for θ < 0, I IP
1 = 0. So it must be the case that

γ ′
IP =

(
1 − β

1 − βb IP
λ

)2

.
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Using (30), we have
 2

√
γ ′

IPθ + r θ

γ ′
IPθ + εIP




∼ N





 (2

√
γ ′

IP + r )θ0

γ ′
IPθ0


 ,


 (2

√
γ ′

IP + r )2σ 2
θ (2

√
γ ′

IP + r )γ ′
IPσ 2

θ

(2
√

γ ′
IP + r )γ ′

IPσ 2
θ (γ ′

IP )2σ 2
θ + σ 2

IP





 .

Using the approximation assumption, the pricing function becomes

P = E
[
2
√

θ I1 + r θ
∣∣ λIP ] = E

[
2
√

θ I1 + r θ
∣∣ I1 + εIP ]

∼= E
[(

2
√

γ ′
IP + r

)
θ | γ ′

IPθ + εIP
]

=
(

2
√

γ ′
IP + r

)
θ0 +

(
2
√

γ ′
IP + r

)
γ ′

IPσ 2
θ

(γ ′
IP )2σ 2

θ + σ 2
IP

(
λIP − γ ′

IPθ0
)
.

So it must be the case that

b IP
λ =

(
2
√

γ ′
IP + r

)
γ ′

IPσ 2
θ

(γ ′
IP )2σ 2

θ + σ 2
IP

,

aIP
λ =

(
2
√

γ ′
IP + r − γ ′

IP b IP
λ

)
θ0.

To show the existence of γ ′
IP and b IP

λ , substituting b IP
λ into γ ′

IP , and simplify-
ing, we have

√
γ ′

IP − 1 = β

γ ′
IP

(
2
√

γ ′
IP + r − γ ′

IP

) − σ 2
IP

σ 2
θ

γ ′
IP

[
γ ′

IP − β
(
2
√

γ ′
IP + r

)] + σ 2
IP

σ 2
θ

.

As γ ′
IP ∈ (0, +∞), and the all functions are continuous, the left-hand side is

increasing in γ ′
IP and covers the range from -1 to +∞. The right-hand side

is −β as γ ′
IP is zero, and also converges to −β as γ ′

IP goes to infinity. Since we
assume that β is from −1 to 1, the left-hand side curve and the right-hand
side curve must intersect at least once in γ ′

IP ∈ (0, + ∞). Therefore, there
is at least one positive root of γ ′

IP .
Using a similar method, we obtain the linear equilibrium under the

output-based accounting system. �
Proof of Corollary 3. Suppose the manager chooses the first-best investment

level I 1 = θ under input-based accounting. Correspondingly, using (29), the
market pricing function would be
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P (λIP ) = aIP
λ + b IP

λ,γ ′
IP =1 × λIP , where

b IP
λ,γ ′

IP =1 = (2 + r )σ 2
θ

σ 2
θ + σ 2

IP

.

To sustain the equilibrium, the manager’s reaction to b IP
λ,γ ′

IP =1 must, indeed,
be to set the investment at the first-best level. That is, it must be the case that

γ ′
IP |b IP

λ,γ ′
IP =1

= 1.

By assuming σ 2
IP = (r + 1)σ 2

θ , we have

b IP
λ,γ ′

IP =1 = (2 + r )σ 2
θ

σ 2
θ + σ 2

IP

= 1.

Using (30), we have

γ ′
IP =

(
1 − β

1 − βb IP
λ,γ ′

IP =1

)2

= 1.

Using a similar method, we get that the firm is motivated to choose
γ ′

OP = 1 if σ 2
OP = 2r σ 2

θ under output-based accounting. As the investment γ ′
m

is strictly decreasing in the measurement noise σ 2
m , under both accounting

measurements, the efficiency of investment is strictly decreasing from the
first-best to either direction. As γ ′

m is continuous in σ 2
m , if r > 1(r < 1),

there must exist a �∗ which lies in the interval of (r + 1)σ 2
θ and 2r σ 2

θ , such
that input-based accounting is more efficient than output-based accounting
when σ 2

IP = σ 2
OP ∈ [(r + 1)σ 2

θ , �∗](σ 2
IP = σ 2

OP ∈ [�∗, (r + 1)σ 2
θ ]). �
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